Quiz 3 (6.6i, 6.1ii, 6.2ii)
(20 points)
You may use computers to check, but you most show the calculus you did, including all steps to find the following.
(1). Find the exact values of the following:
(4 points)
(Note: Unless otherwise stated, it is always expected that answers are exact values rather than calculator approximations)

(a) $\cos ^{-1}\left(-\frac{1}{2}\right)=$

(b) $\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi}{6}$


Can check this with
 calculator


Note: it cannot be

$$
\frac{3 \pi}{2} \text { since }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

(d) $\sin \left(\cos ^{-1}\left(-\frac{2}{3}\right)\right)=-\sin \theta-=\frac{\sqrt{5}}{3}$

$$
\theta=\cos ^{-1}\left(-\frac{2}{3}\right) \Rightarrow\left\{\begin{array}{l}
\cos \theta=-2 / 3
\end{array}\right.
$$

and


$$
0 \leq \theta \leq \pi
$$

(3 points)
(2) Given $f(x)=x^{3}+x+3$ find $\left(f^{-1}\right)^{\prime}(3)$

Show steps clearly, with explanation

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(3)=\frac{1}{f^{\prime}\left(f^{-1}(3)\right)} \\
& =\frac{1}{3(0)^{2}+1} \\
& =1 \\
& \text { Find needed plecies }
\end{aligned}
$$

$$
\begin{aligned}
& 3=x^{3}+x+3 \\
& \Rightarrow \quad x=0 \\
& \text { So }(0,3) \text { on } f \\
& (3,0) \text { ono } \mathrm{F}^{-1} \\
& f^{-1}(3)=0
\end{aligned}
$$

(3) Find $f^{\prime}(x)$ if $f(x)=e$
(3 points)
notation

$$
\begin{aligned}
& f_{d}^{\prime}(x)=e^{3 \cos \left(x^{2}\right)} \frac{d}{d x}\left(3 \cos \left(x^{2}\right)\right) \quad \text { chain rule } \\
&=e^{3 \cos \left(x^{2}\right)}\left(-3 \sin \left(x^{2}\right) \frac{d}{d x}\left(x^{2}\right)\right) \text { chain rule } \\
& \text { again }
\end{aligned}
$$

$$
f^{\prime}(x)=-6 x \sin \left(x^{2}\right) e^{3 \cos \left(x^{2}\right)}
$$

$$
u=\sqrt{x}
$$

changing limits

$$
d u=\frac{1}{2 \sqrt{x}} d x \Rightarrow 2 d u=\frac{1}{\sqrt{x}} d x
$$

$$
\begin{aligned}
& x=4 \Rightarrow u=\sqrt{x}
\end{aligned}
$$

$$
x=1 \Rightarrow u=1
$$

$$
\begin{aligned}
\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x & =\int_{1}^{4} e^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} d x \\
& \left.=\int_{1}^{2} e^{u} 2 d u=2 e^{4}\right]_{1}^{2}=2\left(e^{2}-e\right)
\end{aligned}
$$

(5) Given $f(x)=x e^{x}$, give a thorough answer to the following, showing all work. Then sketch the graph.

Note We will learn in a later section $\lim _{x \rightarrow-\infty} x e^{x}=0$ Use this information to help with your graph (8 points)
(a) domain $(-\infty, \infty)$
(b) $\quad \mathrm{x}$ intercept $(\mathrm{s})=$ $\qquad$

$$
x e^{x}=0 \Rightarrow x=0
$$

(e) local extrema local min at $\left(-1,-\frac{1}{e}\right)$
(f) infection points: at $\left(-2, \frac{-2}{e^{2}}\right)$

$$
f^{\prime}(x)=e^{x}+x e^{x}
$$

$$
f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}
$$

$$
=e^{x}(2+x)
$$

Cotes $e^{x}(1+x)=0$
$f^{\prime \prime}(x)=0$ when $x=-2$


